One of the key challenges in catalysis research is to understand how catalysts’ structure and function relate to each other. Regardless of the type of catalyst in question, structure and function are dynamic with a strong dependence on the localized reaction conditions such as temperature, pressure, and gas composition just above the catalyst surface. Now, researchers developed a new event-averaging-based method employing time-resolved ambient pressure photoelectron spectroscopy to map catalyst structure and local gas environment simultaneously while reaction conditions change rapidly.
Honeycomb borophene: myth or reality?
Scientists examined whether honeycomb boron can function as a structural analogue 2D material to graphene. Employing core-level X-ray spectroscopies, scanning tunneling microscopy, and DFT calculations, they analyzed the structure and electronic properties of honeycomb boron after its reaction with aluminum. They found that although it resembles graphene in electronic structure to some extent, it fails to form a quasi-freestanding monolayer on aluminum. This lack of a freestanding state is a clear difference from the behavior of graphene or monolayer hexagonal boron nitride (h-BN) on lattice-mismatched metal surfaces.
Using strain to control echoes in ultrafast optics
Researchers at MAX IV measured echoes produced by silicon crystals using the coherent X-ray based technique, tele-ptychography, at NanoMAX imaging beamline. Their findings reveal that strain can be used to tune the time delay of echoes, an important step for tailoring ultrafast X-ray optics.
Anna Hultin Stigenberg appointed Technical Director at MAX IV
Anna Hultin Stigenberg, previously Director at EIT Manufacturing North, will assume the newly established role of Technical Director at MAX IV.
Structures of several clinically relevant NUDT15 variants are discovered – paving the way for better cancer treatments
Understanding NUDT15: lessen the efficacy of HCMV treatment
Local Bonding Environment in 2D Transition Metal Carbides Investigated by Balder Users
The chemical bonding in 2-dimensional (2D) MXene material Ti3C2Tx and its precursor Ti3AlC2 was studied at beamline Balder. The relatively newly discovered MXene materials have potential applications from batteries to electronics. A team from Linköping performed the first experiment at Balder in 2019, and the results are now published in Physical Review Research.
First Users at Balder Beamline Seek to Illuminate MXenes
In operation since September, Balder beamline has taken its first users to investigate MXenes, a class of nano-crystalline 2D-layered transition metal carbides, carbonitrides and nitrides. Researchers aim to learn more about their fascinating characteristics and how to exploit their material properties for new technologies.
Unveiling the properties of a versatile 2D material for energy storage and production applications
Researchers from Linköping University and MAX IV have determined the detailed surface atomic arrangement of inherently formed termination species in an important class of two-dimensional materials known as MXene. The results have implications for the use of the material in energy storage and production applications.
The new MAX IV website
MAX IV strives to provide ease of information access and accessibility to the general public and our users. Aside from the fresh new look and functionalities, the new MAX IV website is similar to the previous one in many ways.