Adobestock 364648197

High-speed snapshots reveal hidden details of catalysis

Developments in time-resolved catalysis research opens a long-awaited opportunity to revisit catalytic reactions that have been subject to scientific debate. In this recent publication, the newly developed method has been used to settle the mechanism for carbon monoxide transformation to carbon dioxide over a platinum catalyst. The result is an important step towards optimisation of catalysts.

Highlights

Drone image of MAX IV from above, surrounded by green landscape and the horizon.

A record year for research at MAX IV

MAX IV is making significant societal contributions in terms of record-high scientific productivity. In 2023, the number of publications increased by 51% compared to the previous year, and the number of unique users increased by 31%. Moreover, the number of proposals submitted in the most recent Open Call was higher than ever.

9y9a9159 2

Conceptual design for three potential new beamlines developed with WISE

After successfully bringing the first 16 funded beamlines into operation, we now look into the future. In collaboration with the Wallenberg Initiative Materials Science for Sustainability (WISE), funded by the Knut and Alice Wallenberg Foundation and together with the scientific community, MAX IV will develop the conceptual designs for three potential new materials science beamlines.