Slide Header0134

Kilohertz serial crystallography to film nature’s choreography

A collaborative work between MAX IV and Paul Scherrer Institute researchers investigated a setup to conduct serial and time-resolved macromolecular crystallography at MAX IV. The experiment shows that the setup, based on JUNGFRAU detector and Jungfraujoch data-acquisition system, can provide a molecular moving picture of up to 500 microseconds in resolution of protein dynamics – providing ten times finer details than the previously available method. The setup is in the works to be made available at MicroMAX beamline.

Highlights

Drone image of MAX IV from above, surrounded by green landscape and the horizon.

A record year for research at MAX IV

MAX IV is making significant societal contributions in terms of record-high scientific productivity. In 2023, the number of publications increased by 51% compared to the previous year, and the number of unique users increased by 31%. Moreover, the number of proposals submitted in the most recent Open Call was higher than ever.

9y9a9159 2

Conceptual design for three potential new beamlines developed with WISE

After successfully bringing the first 16 funded beamlines into operation, we now look into the future. In collaboration with the Wallenberg Initiative Materials Science for Sustainability (WISE), funded by the Knut and Alice Wallenberg Foundation and together with the scientific community, MAX IV will develop the conceptual designs for three potential new materials science beamlines.