Your car gets hit by another vehicle, and the steel in its construction is deformed by the impact. The steel isn’t just designed to be strong enough to protect you. It also gets stronger because of the impact. It all has to do with the different arrangements that the atoms inside the steel can assume and under which conditions these so-called phases can exist.
A toothy temporal map of Arctic climate change
In the vast, remoteness of the Arctic, few have the opportunity to gather data on the environmental conditions over time or decipher the long-term effects of climate change. What is required? A considerable period to observe, a nearly autonomous method or actor for collection, a robust character to withstand the harsh surroundings. Researchers from Aarhus University in Denmark are tackling this issue through an interdisciplinary NordForsk project. At DanMAX beamline, the group will analyse a narwhal tusk to determine its chemical composition and biomineralization, both important potential markers of the changing environment.
Amorphous atomic structure of tungsten oxide detected at DanMAX
The relationship between atomic structure and size is crucial knowledge in the effort to improve nanomaterials properties. Amorphous atomic structure was revealed in research done at DanMAX beamline of otherwise crystalline tungsten oxide nanoparticles due to the change of the nanoparticles size. This understanding is crucial for developing materials for, among others, catalysis, batteries, solar cells, memory storage, medicine, etc.
ForMAX beamline is now open for experiments
ForMAX, the newest beamline at MAX IV, is now officially open for experiments. The focus will be research on new, sustainable materials from the forest, but the beamline will also be useful for research in many other fields and industries, including food, textiles, and life science.
Scientists probe ferroelectric domains in curved free-standing superlattices
By growing superlattices consisting of ferroelectric and non-ferroelectric transition metal oxides and releasing them from their underlying substrates, researchers explore polarization patterns in curved geometries.
Scientists unlock secrets of surface receptor activation opening door to engineer plant-microbe interactions
In a study combining structural biology, biochemical and genetic approaches, scientists showed that plant cell-surface receptors employ a mechanism for error correction responsible for the control of receptor activation and signaling select bacterial symbionts. This demonstration opens the door to potentially manipulating such receptors’ binding sites in legumes and other organisms in the future.
Aarhus scientists investigate secrets behind mantis shrimp clubs at DanMAX
Mantis shrimp or stomatopods, intrigue humans due to their beauty but also fierce predatory behavior.
Deciphering corrosion resistance of superalloys
To develop longer-lasting metallic materials for harsh operating conditions requires understanding of their surface composition, structure and properties. A Swedish research group investigated the surface chemistry and thickness of the protective native oxide layer of nickel superalloys at MAX IV’s FlexPES beamline.
LEAPS-INNOV project offers funding for collaborative work
Spotlight on student science
The winner of the Student Science Award was announced at the 34th MAX IV User Meeting held in early October. User Meeting organizers and a team of three external adjudicators awarded the student submission based upon the criteria: research quality and potential impact. This year’s Student Award recipient is Harald Wallander for his research on characterizing ultra-thin materials during catalytic action.