Iron organic complexes in Sweden’s boreal rivers significantly contribute to increased iron concentration in open marine waters, X-ray spectroscopy data shows. A Lund University study in Biogeosciences characterizes the role of salinity for iron-loading in estuarine zones, a factor which underpins intensifying seasonal algal blooms in the Baltic Sea.
Exploring the structure of industrial polymers with the help of the CoSAXS beamline
DanMAX is catalysing industry research
Metal industry giant conducts experiments at MAX IV
Salts of the Earth aid understanding of Martian salt chemistry
How does one learn more about the characteristics of the Martian atmospheric chemistry and climate system while seated 56 million plus kilometres away? Using MAX IV’s HIPPIE beamline, an international research group studied the surface solvation of salts from Earth’s Qaidam Basin, which bear close resemblance to Martian salts and how these influence the respective planet’s surface. The work also establishes the feasibility of the APXPS technique for future studies with Martian salts.
Exeger investigates the chemistry of liquid-filled energy material
The role of synthesis gas in tomorrow’s sustainable fuels
In a new publication in Nature Communications, a team from the Dutch company Syngaschem BV and the Dutch Institute for Fundamental Energy Research elucidates for the first time some aspects of the Fischer-Tropsch reaction, used for converting synthesis gas into synthetic fuels. Analysis performed at the HIPPIE beamline at MAX IV was instrumental to achieving these results.
Identifying chemical content to increase the usefulness of solid waste ashes
Fortum Waste Solutions, Sysav, Eon, Stena and NOAH, in collaboration with Researchers from RISE and Chalmers, used beamline Balder to identify chemical species of copper and zinc in ashes that remain after burning solid waste. Not all forms of the metals in ashes pose the same risk to the environment. Therefore, more detailed knowledge can increase the possible uses of the ashes.
COOL sustainability more than a pipe dream in Lund
Sustainability measures, when applied intelligently, bolster societal productivity and deliver tangible improvements to the natural environment. Some argue that world economies cannot survive the impacts of business as usual in terms of pollution and high energy demands. In Lund, sustainability in work and life is a consistent aim, and in the most constructive way with COOL DH—the build project for the world’s largest low temperature district heating grid—nearing completion.
Designing a Model Catalyst for Large-Scale Biofuel Production
The future of efficient biofuel production is within reach. With measurements from MAX IV’s SPECIES beamline, a group from Lund University and RISE, Research Institutes of Sweden, has successfully developed a model catalyst that, once tuned, holds the potential to significantly improve the treatment process for the large-scale manufacture of viable biofuels from lignin. Lignin is a plant polymer only secondary in abundance to cellulose in nature.