Spintronics technology has taken a step forward with new experimental evidence of parallel spin-momentum locking in chiral materials. Results from the spin branch of the Bloch experiment station contributed to the discovery.
The dawning of new interpretation for RIXS spectra
In a recent study at Veritas beamline, researchers from Uppsala University in Sweden observed parity-forbidden transitions to electronic states in an oxygen molecule due to interference analogous to Young’s double split experiment (YDSE). The findings, published in Science Advances, may change the way spectral data is interpreted for RIXS experiments and refine the conventional wisdom in synchrotron science for the interplay of photons with the dynamics of atomic nuclei in molecules.
A unifying theory of superconductivity: Finding common symmetry
A global goal of physics is greater knowledge of the mechanism of superconductivity. A research group from China and the United Kingdom recently reported in Nature Physics the pairing symmetry of iron-based superconductor KFe2As2, which contains only hole pockets on the fermi surface. The result, which includes measurements at BLOCH beamline, brings science closer to a unified theory of unconventional superconductivity for iron-based materials.
To glue and be glued – unusual electron pairing gives clue to high-temperature superconductivity
A team of researchers have studied the high-temperature superconducting cuprate-material Nd1.85Ce0.15CuO4 with a small amount of electron-rich atoms added, a practice called electron-doping. The material turns out to have unusual electronic properties underpinning its superconductivity. The result has important implications for a larger group of similar superconducting materials.