The domain structure of a new type of magnet, called altermagnet, has been imaged for the first time at the MAXPEEM beamline. The study opens the way for controlling the properties of these materials at the nanoscale and could contribute to faster and more energy efficient memory devices.
Controllable droplets carry promise for self-assembled nanodevices
Metal patterns printed on a III-V semiconductor material can control the appearance and positions of droplets arising on its surface when heated. The result is a significant step forward for controlled device fabrication on a chip.
A fuel conversion process akin to photosynthesis
Researchers at Linköping University in Sweden are developing a promising new method to selectively convert carbon dioxide and water to various types of fuel. Driving this reaction is solar energy. The recent study, published in ACS Nano, combines the material graphene and the semiconductor cubic silicon carbide in a process which essentially mimics photosynthesis in plants.
Strong coupling of thin ferromagnet to Manganese Gold compound yields successful antiferromagnetic read-out
Scientists demonstrated a strong coupling of very thin ferromagnetic permalloy layers to the antiferromagnetic spintronics compound Manganese Gold. This enabled them to apply well-established read-out methods commonly applied to ferromagnets in antiferromagnetic spintronics as well.
The company Alfa Laval gains unprecedented insights on stainless steel at MAX IV
A team from the Swedish company Alfa Laval used MAX IV beamline MAXPEEM to gain unprecedented insights on the oxide layer of stainless steel. The information they obtained will be highly beneficial for the company’s R&D activities.