The Imaging endstation (EH1) is made up of many parts. Here we list the pieces of hardware and those specs that are important for planning your experiments.

Sample stages

Nanomax Img Sample Stages2

For fine scanning of the sample through the X-ray beam an in-vacuum scanner stage from nPoint is used. The scanning stage has the following specifications of interest for the user:

Closed-loop Travel200 µm | 200 µm | 100 µm (vertical)
Position Noise0.7nm | 0.7nm | 0.3nm
Resonant Frequency350Hz | 350Hz | 450Hz
Linearity Deviation0.01% | 0.01% | 0.02%

A rotation stage SR-5714C (from SmarAct, Germany) is mounted on top of the scanner to rotate the sample either for tomographic measurements or to align it to the X-ray beam at an specific angle. The stage is mounted such that the axis of rotation is in a vertical orientation.

angular travel∞ [°]
closed loop-Loop angular resolution< 15 [0.001 * °]
sphere of confusion< 1 µm radially
< 0.5 µm along the rotation axis

Detectors

Nanomax Img Detectors Layout Simple2

The Imaging endstation (EH1) has two types of detectors for X-rays: a 2D pixel detector for X-ray ptychoghraphy measurements and two energy dispersive silicon drift detectors for X-ray fluorescence measurements. All detector sensors are located inside the vacuum chamber. The arrangement of the detectors relative to the probing beam, the focus and to each other is shown in the sketch above.

Nanomax Img Detectors Rayspec 1
Nanomax Img Detectors Rayspec 2

For X-ray fluorescence measurements we have two single-element silicon drift detectors “SDD” (from RaySpec, United Kingdom) with carbon entry windows connected to a pulse processor Xspress3-Mini (from Quantum Detectors, United Kingdom). The key specs of the detectors are:

sensor materialSi
sensor areacollimated to 50 mm²
sensor thickness450 µm
window material1 µm thick graphene
energy resolution≤133 eV FWHM (at 5.9 keV)
Nanomax Img Detectors Rayspec Window

The active detector area is protected by a 1 µm thick window made from carbon. In the graph above the photon energy dependent transmission of this window is plotted. The low transmission at the lower photon energies and the increased electronic noise of the readout electronics limit meaningful XRF measurements to chemical elements with an atomic number of 11 (sodium) or higher.

The Xspress3-Mini pulse processor has a deadtime of about ~80 ns per event and allows to process about one million XRF photons per second.

Collimators manufactured from PEEK are mounted at the end of both detector heads. These reduce the background signal from stray photons from other places than the sample (for example from secondary XRF photons). Both detectors are motorized to the be moved closer to / further from the sample. The closest distance of the active detector area to the X-ray beam is 30 mm.

Nanomax Img Detectors Eiger2x4m 1
Nanomax Img Detectors Eiger2x4m 2 1

For ptychographic measurements we have a photon counting pixel detector EIGER2 X 4M (from DECTRIS, Switzerland). The detector is mounted fully in vacuum without any window. The following detector specs might be of interest:

pixel size75 μm x 75 μm
number of pixels (h x v)2068 x 2162 = 4 471 016
active area (h x v)155.2 mm x 162.5 mm
sensor materialSi
sensor thickness450 μm
energy range6 keV – 40 keV

In the most common configuration it is placed at a distance of 7.1m from the X-ray focus / sample position. This is the furthest sample detector position. This distance is not motorized, but can still be adjusted. The flight tube is made of segments of various lengths. By shuffling around segments a few discrete distances can be achieved. As changing the distance requires venting, rearrangement of the segments and finally pumping the flight tube again, this is not something we would do during a beamtime.