SINCRYS – Single (micro) crystal X-ray diffraction

First Light: TBA (2025/2026) Single crystal X-ray diffraction is the preferred technique to solve the atomic structure of a crystalline material. It is now a routine technique in many research laboratories, however, the limited flux, spectral purity and focusing ability of a lab-source severely limits the size and quality of the crystals that can be

XRD data

The multimodal in-situ XAS-XRD endstation is used for in-situ / in-operando investigations with a total time resolution of currently about 20s. Exemplary data is shown here: In-situ data from the formation of metal halide perovskite thin-films (in-FORM project)

SPECIES

SPECIES is an undulator based soft X-ray beamline, located at the 1.5 GeV storage ring. The offered experimental techniques are Ambient Pressure X-ray Photoelectron Spectroscopy (APXPS), X-ray Absorption Spectroscopy (XAS), X-ray Emission Spectroscopy (XES) and Resonant Inelastic X-ray Scattering (RIXS). The beamline has two branches that use a common elliptically polarizing undulator (EPU61) and a

HIPPIE

Both Solid-Gas andSolid-Liquid endstations are available for users HIPPIE is a state-of-the-art beamline for Ambient pressure X-ray photoelectron spectroscopy (APXPS). The combination of the exceptional performance of the 3 GeV ring with an innovative design of the experimental station results in a beamline that is not just outstanding in a pure electron spectroscopy context but

Balder

We are organizing a hands-on workshop on data treatment for the primary techniques used at Balder as a satellite to the MAX IV User Meeting. Please click on this link or the image below for more information. Overview The Balder beamline is dedicated to X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) in medium

DanMAX

DanMAX is a materials science beamline, dedicated to in situ and operando experiments on real materials. The beamline will operate in the 15–35 keV range and have three endstation instruments: one for full field imaging instrument, one versatile powder diffraction setup using an area detector and a high resolution powder X-ray diffraction instrument using a